用反证法证明:若方程ax2(平方)+bx+c=0(a≠0)有两个不相等的实数根,则b2-4ac>0用反证法证明:在三角形ABC中,如∠C是直角,则∠C一定是锐角..我在预习高1的内容 关于反证法方面的不太会 希望大家

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:28:43
用反证法证明:若方程ax2(平方)+bx+c=0(a≠0)有两个不相等的实数根,则b2-4ac>0用反证法证明:在三角形ABC中,如∠C是直角,则∠C一定是锐角..我在预习高1的内容 关于反证法方面的不太会 希望大家
xSn@/AVMHdv$$4Bx%IE6q1t^ !V6UZ3{νwntͻ.Y}۵W^eD[{^bnkv&ҞJ!.]˽RNSڼ _HK4K&Gp7uB1}v? Ē`o1Nwebe;ň؟y-ªF^#U. '`~N$Xā ߲|Ou

用反证法证明:若方程ax2(平方)+bx+c=0(a≠0)有两个不相等的实数根,则b2-4ac>0用反证法证明:在三角形ABC中,如∠C是直角,则∠C一定是锐角..我在预习高1的内容 关于反证法方面的不太会 希望大家
用反证法证明:若方程ax2(平方)+bx+c=0(a≠0)有两个不相等的实数根,则b2-4ac>0
用反证法证明:在三角形ABC中,如∠C是直角,则∠C一定是锐角..
我在预习高1的内容 关于反证法方面的不太会 希望大家多多赐教

用反证法证明:若方程ax2(平方)+bx+c=0(a≠0)有两个不相等的实数根,则b2-4ac>0用反证法证明:在三角形ABC中,如∠C是直角,则∠C一定是锐角..我在预习高1的内容 关于反证法方面的不太会 希望大家
1.
化简ax^2+bx+c=0得x1=(-b+根号下(b^2-4ac))/2a
x2=(-b-根号下(b^2-4ac))/2a
至于如何化简,只是简单的配方移项(只要不怕麻烦就行)
若b^2-4ac〈0
根号下无意义,则无根.

b^2-4ac=0
原式=(-b)/2a
因为与有“两个不相等的实数根”不符
所以“若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0”
2.
第二题题目错了,是“∠B一定是锐角

假设角C是直角,而角B不是锐角,即是直角或钝角
∠B=180-∠A-∠B 小于180-∠C =180-90=90
即角B小于90
与假设不符
所以假设不成立
角B一定是锐角

用反证法证明:若方程ax2+bx+c=0(a不等于0)有两个不相等的实数根,则 用反证法证明:若方程ax2(平方)+bx+c=0(a≠0)有两个不相等的实数根,则b2-4ac>0用反证法证明:在三角形ABC中,如∠C是直角,则∠C一定是锐角..我在预习高1的内容 关于反证法方面的不太会 希望大家 用反证法证明:若方程ax平方加bx加c等于0(a不等于0)有两个不相等的实数根,则b平方减4ac大于0.马上要, 用反证法证明若PQ是奇数,则方程X的平方+PX+Q不可能有整数解? 用反证法证明;若整数系数方程ax^2+bx+C=0(A0)有有理数,则A,B,C中至少有一个是偶数 用反证法证明:若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0. 已知abc是互不相等的非零实数,用反证法证明三个方程ax2加2bx加c等于0,bx2加2cx加b等于零,cx2加2ax加b等于零,至少有一个方程有两个相异实根 1、设二次函数f(x)=ax2+bx+c,若f(x1)=f(x2),(其中x1≠x2),则f(x1+x2/2)等于?2、已知实数x∈{1,2,x平方},则实数x等于?3、用反证法证明:已知x,y∈R,且x+y>2,则x,y中至少有一个大于1 1、设二次函数f(x)=ax2+bx+c,若f(x1)=f(x2),(其中x1≠x2),则f(x1+x2/2)等于?2、已知实数x∈{1,2,x平方},则实数x等于?3、用反证法证明:已知x,y∈R,且x+y>2,则x,y中至少有一个大于1 用反证法证明以下题:当x的平方+bx+c的平方=0有两个不相等非0的实数根时,bc不等于0. 用反证法证明:若整数系数方程ax平方+bx+c不等于0(a不等于0)有有理根,则a,b,c中至少有一个数是偶数“故b^2-4ac为偶数” 好象是奇数啊 用反证法证明:若一个正整数的平方是偶数,则这个数也是偶数 用反证法证明 若一个正整数的平方是偶数 则这个数也是偶数 反证法证明 若sinA 用反证法怎么证明 用反证法证明, 一定要用反证法证明! 1.用反证法证明,若方程ax^2+bx+c=0(a≠0)有两个不相等的实数根,则b^2-4ac>0.2.用反证法证明:在△ABC中,若∠C是直角,则∠B一定是锐角.