1.用反证法证明,若方程ax^2+bx+c=0(a≠0)有两个不相等的实数根,则b^2-4ac>0.2.用反证法证明:在△ABC中,若∠C是直角,则∠B一定是锐角.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:33:19
xՒN@_%KKBLi$-{Ct6j RzA"`GiRV}FLw柲%.ZmܝA,hA;4ƳX.0Քd)֘v-Y
)|0[X3\:4&u7RIEN3C){H[hڇ !w+"Y}/N8O54 [y}}W{ kQ@Wh\<%}-myK(FKsiCJ|N^~G.*w*
Rs=o ~DCB!f{w?yV6-ĺ$`01Xt`+,O|.sh|.K}P}1y%~fR%~oYH
1.用反证法证明,若方程ax^2+bx+c=0(a≠0)有两个不相等的实数根,则b^2-4ac>0.2.用反证法证明:在△ABC中,若∠C是直角,则∠B一定是锐角.
1.用反证法证明,若方程ax^2+bx+c=0(a≠0)有两个不相等的实数根,则b^2-4ac>0.
2.用反证法证明:在△ABC中,若∠C是直角,则∠B一定是锐角.
1.用反证法证明,若方程ax^2+bx+c=0(a≠0)有两个不相等的实数根,则b^2-4ac>0.2.用反证法证明:在△ABC中,若∠C是直角,则∠B一定是锐角.
1 如果b^2-4ac≤0
那么根据求根公式x=(-b±√(b^2-4ac)/2a
因为b^2-4ac≤0 所以√(b^2-4ac)没有意思或者为0
所以方程无根或者有2个等根
与题目有2个不等根矛盾
所以b^2-4ac>0
2 假设B≥90
因为A+B+C=180
A=90-B≤0
又A>0
所以相互矛盾
所以B一定是锐角
1.用反证法证明,若方程ax^2+bx+c=0(a≠0)有两个不相等的实数根,则b^2-4ac>0.2.用反证法证明:在△ABC中,若∠C是直角,则∠B一定是锐角.
用反证法证明:若ax^2+bx+c=0(a不=0)有两个不等实根,则b^2-4ac大于0
用反证法证明:若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0.
用反证法证明;若整数系数方程ax^2+bx+C=0(A0)有有理数,则A,B,C中至少有一个是偶数
急!用反证法证明方程ax^2+bx+c=0“虚根成对”,即方程不可能同时有一个实根和一个虚根已知a,b,c都是实数且a≠0,用反证法证明方程ax^2+bx+c=0“虚根成对”,即方程不可能同时有一个实根和一个虚
用反证法证明:若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0.快啊///
用反证法证明:若整数系数方程ax^2+bx+c=0(a≠0)有有理根,则a,b,c中至少有一个数是偶数.
设二次函数f(x)=ax^2+bx+c(a不为0)中a,b,c均为整数,且f(0),f(1)均为奇数,用反证法证明方程f(X)=0无整数根
用反证法证明:若方程ax2+bx+c=0(a不等于0)有两个不相等的实数根,则
用反证法证明:若方程ax平方加bx加c等于0(a不等于0)有两个不相等的实数根,则b平方减4ac大于0.马上要,
用反证法证明:若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0.)这个题怎么做,我看了别人说吧方程化简请问怎么把这个方程化简,请化简一边给我看下
用反证法证明:若a不等于0,关于x的方程ax-b=o只有一个实数根.
已知a、b、c是互不相等的非零实数,用反证法证明三个方程ax^2+2bx+c=0,bx^2+2cx+a=0,cx^2+2ax+b=0至少有一个方程有两个相异实根.
用反证法证明:若方程ax2(平方)+bx+c=0(a≠0)有两个不相等的实数根,则b2-4ac>0用反证法证明:在三角形ABC中,如∠C是直角,则∠C一定是锐角..我在预习高1的内容 关于反证法方面的不太会 希望大家
求证关于x的方程ax²+bx+c=0有一个根为1的充要条件是a+b+c=0要求用反证法证明则反证法是将结论反成什么样子 我主要是要的这个
用反证法证明ax^2+bx+c=0(a不等于0)有两个不相等的实数根,则b^2-4ac>0
用反证法证明:若x+y>2,求证1+x
已知abc是互不相等的非零实数,求证ax^2+2bx+c=0,bx^2+2cx+a=0,cx^2+2ax+b=0至少有一个方程有两个相异实根用反证法证明