1/2+3/2^2+5/2^3+7/2^4+…+2n-1/2^n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:27:52
x)376736@DQ2m<]d\MR>1l6ź}Ŷ]l`VhVh$ӡm UQp Q
A:N5|v[N]m }k <;Px {
1/2+3/2^2+5/2^3+7/2^4+…+2n-1/2^n
1/2+3/2^2+5/2^3+7/2^4+…+2n-1/2^n
1/2+3/2^2+5/2^3+7/2^4+…+2n-1/2^n
设s=1/2+3/2^2+5/2^3+7/2^4+…+2n-1/2^n
1/2s= 1/2^2+3/2^3+5/2^4+…+2n-3/2^n+2n-1/2^(n+1)
s-1/2s=1/2+2/2^2+2/2^3+2/2^4+…+2/2^n—2n-1/2^(n+1)
1/2s= 1/2+(1/2+1/2^2+1/2^3+…+1/2^n-1)—2n-1/2^(n+1)
=1/2+(1-1/2^n-1)—2n-1/2^(n+1)
s=2(1/2s)=3+7-2n/2^n
-|-2/3-(+2/3)|-|(-1/5)+(-2/5)| |4/7-2/5|-|3/5-7/9|+|2/9-3/7|
3/(1^2)+5/(1^2+2^2)+7/(1^2+2^2+3^2)+.+(2n+1)/(1^2+2^2+.n^2)=?
2/1*3+2/3*5+2/5*7+.+2/17*19+2/19*21=?
2/1*3+2/3*5+2/5*7+2/11*13+2/13*15
2/3×1+2/5×3+2/7×5+.+2/2003×2001+2/2005×2003=?
求和Sn=1^2+3^2+5^2+7^2+…+(2n-1)^2
为什么1^2+3^2+5^2+7^2的通项是(2n-1)^2
-3/7+3/2+1+-5
放缩法证明1/3^2+1/5^2+1/7^2+.+1/(2n+1)^2
求四阶行列式1^2 2^2 3^2 4^2 2^2 3^2 4^2 5^2 3^2求四阶行列式1^2 2^2 3^2 4^2 2^2 3^2 4^2 5^2 3^2 4^2 5^2 6^2 4^2 5^2 6^2 7^2 的值
2^13+2^12+2^11+2^10+2^9+2^8+2^7+2^6+2^5+2^4+2^3+2^2+2+1
1+3/2+5/2^2 +7/2^3 +…+21/2^10
计算:(-13/2)×2/3-0.5×2/7+1/3×(-13/2)-5/7×0.5简便、、
Sn=3/(1*2^2)+5/(2^2*3^2)+7/(3^2*4^2)+...+2n+1/[n^2(n+1)^2],求和!
2 ,1 ,2/3 ,1/2, 2/5的通项公式2/5 后面还有1/3,2/7
等比数列求和:1/2,3/2^2,5/2^3,7/2^4,……,(2n-1)/2^n,
1/2+3/2^2+5/2^3+7/2^4+…+2n-1/2^n
1+3+5+7+.+(2n-1)