不定积分题(9题)1.∫ln(x+1)dx2.∫(√x+1/√x)^2dx3.∫√(1-2x)dx4.∫2^(2x)dx5.∫(x-1)/(x^2+1)dx6.∫sinx/(cosx+1)dx7.∫e^xcos(e^x)dx8.∫dx/(xlnx)9.∫sin2x*cos2xdx用分部积分法,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:20:52
不定积分题(9题)1.∫ln(x+1)dx2.∫(√x+1/√x)^2dx3.∫√(1-2x)dx4.∫2^(2x)dx5.∫(x-1)/(x^2+1)dx6.∫sinx/(cosx+1)dx7.∫e^xcos(e^x)dx8.∫dx/(xlnx)9.∫sin2x*cos2xdx用分部积分法,
xRMK@+IFmvϐ3obܥW|Z|RąA7'7_6sϝsOZ].~=;M|(3mjGl)oTFKn|_fʹ[O&XBNA\xDh.?u{jVy7rԂ - Emm ͗Fו%X{umՄ8K;EwpB x+hs×u7Sd㇣ĠDlr.uJJ<Ӏw>LJ

不定积分题(9题)1.∫ln(x+1)dx2.∫(√x+1/√x)^2dx3.∫√(1-2x)dx4.∫2^(2x)dx5.∫(x-1)/(x^2+1)dx6.∫sinx/(cosx+1)dx7.∫e^xcos(e^x)dx8.∫dx/(xlnx)9.∫sin2x*cos2xdx用分部积分法,
不定积分题(9题)
1.∫ln(x+1)dx
2.∫(√x+1/√x)^2dx
3.∫√(1-2x)dx
4.∫2^(2x)dx
5.∫(x-1)/(x^2+1)dx
6.∫sinx/(cosx+1)dx
7.∫e^xcos(e^x)dx
8.∫dx/(xlnx)
9.∫sin2x*cos2xdx
用分部积分法,

不定积分题(9题)1.∫ln(x+1)dx2.∫(√x+1/√x)^2dx3.∫√(1-2x)dx4.∫2^(2x)dx5.∫(x-1)/(x^2+1)dx6.∫sinx/(cosx+1)dx7.∫e^xcos(e^x)dx8.∫dx/(xlnx)9.∫sin2x*cos2xdx用分部积分法,
1.=xln(x+1) - ∫xdln(x+1)=xln(x+1) +∫(1-1/(x+1))dx
2.平方开得到(x+1/x+2),积分得到2x + x^2/2 + lnx + C
3.换元得-(1/3) (1 - 2 x)^(3/2) + C
4.变成4^x得到4^x/ln4 + C
5.拆开得到x/(x^2+1)-1/(x^2+1)的,前一半合到dx里,得到结果1/2 ln(1 + x^2)-arctanx + C
6.sinx合到dx里,-2 ln cos(x/2) + C
7.e^x合到dx里 sin (e^x) + C
8.换元v=lnx,得到∫d(e^v)/(ve^v)=lnlnx + C
9.变成1/2 sin4x,-(1/8) cos[4 x] + C