初三数学急用已知函数y=x²-(m²+4)x-2m²-12(1)证明不论m取何实数,它的图像与x轴总有两个交点,且其中一个交点是(-2,0)(2)m取何值时,它的图像在x轴上截得的线段的长度是12.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:26:25
初三数学急用已知函数y=x²-(m²+4)x-2m²-12(1)证明不论m取何实数,它的图像与x轴总有两个交点,且其中一个交点是(-2,0)(2)m取何值时,它的图像在x轴上截得的线段的长度是12.
初三数学急用
已知函数y=x²-(m²+4)x-2m²-12
(1)证明不论m取何实数,它的图像与x轴总有两个交点,且其中一个交点是(-2,0)
(2)m取何值时,它的图像在x轴上截得的线段的长度是12.
初三数学急用已知函数y=x²-(m²+4)x-2m²-12(1)证明不论m取何实数,它的图像与x轴总有两个交点,且其中一个交点是(-2,0)(2)m取何值时,它的图像在x轴上截得的线段的长度是12.
先分析一下抛物线y=ax²+bx+c 与 x轴的交点情况.
因为 交点在 x轴 上,
所以 交点的纵坐标 为 O.即此时 y=0
则有 ax² + bx+c = 0 这就转化为判别一元二次方程根的情况
故 一元二次方程根的个数 即为 抛物线与x轴交点的个数.
证明:(1)一元二次方程 x² --(m²+4)x --2m²--12=0的根的判别式为
△ = b² - 4ac
= [ -- (m²+4) ]² -- 4 × 1 × ( --2m²--12 )
= ( m²+8 )² 它显然大于零.
故 不论m何值,抛物线与x轴总有两个交点.
如何证明其中一个交点是(-2,0)呢?
就是让证明方程有一根为--2 .( 注意:是让证明,不能把x= --2代入方程!)
事实上,对原方程左边因式分解得 ( x+2 )( x--m²--6 )= 0
x1 = --2 x2 = m²+6
故 抛物线与x轴有一个交点为 ( --2,0 ).
(2) 由(1 )问 可知另一个交点为 ( m²+6,0)
因 m²+6>0 ,故该点在 ( --2,0 )右侧,而不会在(--2,0)左侧.
由抛物线在x轴上截得线段长为12得:
( m²+6 ) -- ( --2 )= 12
m² = 4
所以 m=2 或 m=--2
故 当 m=2 或m=--2 时,抛物线在x轴上截得的线段长为12 .(不存在其他情形!)
补充:第二问 您也可这样考虑:
一个交点为 (--2,0) 且图像在x轴上截得线段长为12
故 另一交点坐标应为 ( --14,0 )或( 10,0 )
但本题含参数m,最后还需检验,麻烦且易遗漏.
本题实际上不会有( --14,0 )那个交点.
至于检验,观察方程:x² --(m²+4)x --2m²--12=0 由根与系数关系知两根之和为 m²+4,它显然大于零,而 --2 + --14 小于零,故不能有--14 那个根.所以
--14,0 )那个交点.
y=x2-(m2+4)x-2m2-12
代入x=-2
y=0
所以一个交点是(-2,0)
判别式=(m2+4)^2-4(-2m2-12)=m^4+16m^2+64>0
所以与x轴总有两个交点
根据第一问
一个交点是(-2,0)
而且图像在x轴上截得的线段的长度是12.
所以另一个交点是(10,0)或(-14,0)
1....
全部展开
y=x2-(m2+4)x-2m2-12
代入x=-2
y=0
所以一个交点是(-2,0)
判别式=(m2+4)^2-4(-2m2-12)=m^4+16m^2+64>0
所以与x轴总有两个交点
根据第一问
一个交点是(-2,0)
而且图像在x轴上截得的线段的长度是12.
所以另一个交点是(10,0)或(-14,0)
1.
另一个交点是(10,0)
代入y=x2-(m2+4)x-2m2-12
解得m=2或-2
2.
另一个交点是(-14,0)
代入y=x2-(m2+4)x-2m2-12
解得m=2根号2或-2根号2
收起