设n阶矩阵A满足A的平方等于E 证明A的特征值只能是正负一

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:33:24
设n阶矩阵A满足A的平方等于E 证明A的特征值只能是正负一
x){n_۞_rVgض;7?'\^o|6$s}O<_y럭]b';lj~ ]蘨`PSd.g vꁥm]m㌀ccQm#kyE@ 2[; PP!HAPF 1d

设n阶矩阵A满足A的平方等于E 证明A的特征值只能是正负一
设n阶矩阵A满足A的平方等于E 证明A的特征值只能是正负一

设n阶矩阵A满足A的平方等于E 证明A的特征值只能是正负一
Aa = ra,r为特征根.
a=Ea=A^2a=A(Aa)=Ara=rAa=r(ra)=r^2a
=> r^2=1,r=1 or -1.