已知0是n阶实对称矩阵A的一个二重特征值,则r(A)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:29:22
已知0是n阶实对称矩阵A的一个二重特征值,则r(A)=
x){}K Xrƶ=] |9cY-Ov4<ٱɮ;w>aӎE6IE_`gCX yFz6yv 

已知0是n阶实对称矩阵A的一个二重特征值,则r(A)=
已知0是n阶实对称矩阵A的一个二重特征值,则r(A)=

已知0是n阶实对称矩阵A的一个二重特征值,则r(A)=
r(A) = n-2.

已知0是n阶实对称矩阵A的一个二重特征值,则r(A)= 大一线性代数问题百度上说:若n阶矩阵A有n个相异的特征值,则A与对角矩阵相似,如果一个三阶矩阵特征值0,1,1,其中1是二重的,这三个不是相异,那A就不与对角矩阵相似了吗? 已知3阶实对称矩阵A每一行的和均为3,且其特征值均为正整数,|A|=3,求矩阵A.为什么因为3一定是一个特征值对于n阶矩阵而言,每行和为a的话,那么a一定是其一个特征值么?怎么证明,求详解, 线性代数:为什么三阶实对称矩阵A,R(A-2E)=1,所以2是A的二重特征值? 设A是n阶实对称矩阵,证明A是正定矩阵的充分必要条件是A的特征值都大于0 设A是n阶实对称矩阵 P是n阶可逆矩阵 ,已知n维列向量β是属于特征值λ的特征限量,则矩阵(P^( -1) AP)倒置的上面问题只显示了一半设A是n阶实对称矩阵 P是n阶可逆矩阵 已知n维列向量β是属于特征 设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP)^T设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP) 已知5阶矩阵A与对角矩阵相似,且3是A的二重特征值,则R(A-3E)=? 求一道线性代数矩阵的特征值问题已知A是3阶实对称阵,且满足A²+2A=0,为什么A的特征值是0和-2?这两个特征值是怎么求出来的? 已知A是三阶矩阵,r(A)=1,则λ=0是() B至少是A的二重特征向量.还有,λ=0与矩阵的秩有何关可是为什么是“至少是A的二重特征值”而不是“必是A的二重特征值”? A是n维欧氏空间的一个反对称线性变换,为什么这个线性变换在标准正交基下的实反对称矩阵A特征值只能是虚数 设A是n阶正定矩阵,AB是n阶实对称矩阵,证明AB正定的充要条件是B的特征值全大于零 设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP)^T属于特征值r的特征向量是( ).(A)P^-1a (B)P^Ta (C)Pa (D)(P^-1)^Ta 线性代数:设三阶实对称矩阵A的秩为2,r1=r2=6是A的二重特征值.设三阶实对称矩阵A的秩为2,r1=r2=6是A的二重特征值.若α1=(1,1,0)^T,α2=(2,1,1)^T,α3=(-1,2,-3)^T都是A的属于特征值6的特征向量.(1)求A的另一 设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵[P^(-1)AP]^T属于特征值λ的特征向量是( )A.[P^(-1)]α B.[P^T]α C.Pα D.{[P^(-1)]^T}α 已知n阶方阵A与某对角矩阵相似,则A.A有n个不同的特征值B.A一定是n阶实对称矩阵C.A有n个线性无关的特征向量D.A的属于不同特征值的特征向量正交 A是n阶非零矩阵,已知A^2+A=0能否推出-1是A的一个特征值? 设α是n阶对称矩阵A属于特征值λ的特征向量,求矩阵(P-1AP)T的属于特征值λ的特征向量