设f(x)在[a,+∞)内二阶可导,且f(a)>0,f'(a)a时,f''(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:41:02
xнJPW)Cgnn$ɢo '&6]q\nED|iD(:8ɿ zˋY`rk8#Wn麑;J9?j:#h̫}7{v2f!US]݆T$TC+01j,$$9hƩ1 $'bH$&nIlx(,-Di%"4b6hm?Vl,gtdcIŅf:jQ
设f(x)在[a,+∞)内二阶可导,且f(a)>0,f'(a)a时,f''(x)
设f(x)在[a,+∞)内二阶可导,且f(a)>0,f'(a)a时,f''(x)
设f(x)在[a,+∞)内二阶可导,且f(a)>0,f'(a)a时,f''(x)
设f(x)在[a,+∞)内二阶可导,且f(a)>0,f'(a)a时,f''(x)
设f(x)在[a,+∞)内二阶可导,且f(a)>0,f'(a)a时,f''(x)
设f(x)在[a,b]二阶可导,且f''(x)
设F(x)=(f(x)-f(a))/(x-a),(x>a)其中f(x)在[a,+∞)上连续,f''(x)在(a,+∞)内存在且大于0,求证F(x)在(a,+∞)内单调递增.
设函数f(x)在(a,+∞ )上可导,且lim(x->+∞ )(f(x)+f'(x))=0,证明:lim(x->+∞ )f(x)=0
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设f'(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(b)=0,f(c)>0,a
设f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)f(b)<0,f'(c)=0.a
设f(x)是定义在(0,+∞)上的增函数,且f(xy)=f(x)+f(y).若f(3)=1,且f(a)>f(a-1)+2,求a的取值范围
设f(x)是定义在(0,+∞)内的增函数,且f(xy)=f(x)+f(y),若f(3)=1,且f(a)>f(a-1)+2,求a的取值范围
设f(x)是定义在(0,+∞)上的增函数,且f(xy)=f(x)+f(y).若f(3)=1,且f(a)>f(a-1)+2,求a的取值范围
设f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y) 若f(3)=1 且f(a)>f(a-1)+2 ,求实数a的取值范围
设f(x)在[0,1]上可积,且a
设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)
设函数f(x)在[a,b]上连续,在(a,b)上可导且f'(x)
设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]上单调增加