如图1,Rt△ABC≌Rt△EDF,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M、k
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:04:00
xRJA~/]3vuƝaoz nL*V3
0Gv:#=@ww2(ssة<1$Ǻ,yNM!*W4h%C2WRHу}^:vG51J{-bV911v6{om]NMe0۱&+I
~`4|LZ O{ 0E bFB8#EV#t#5+ Y$/L1 l$>1aR7%YLU`w1eF-lYLd2XqFzUVz,5M>,g
Z
如图1,Rt△ABC≌Rt△EDF,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M、k
如图1,Rt△ABC≌Rt△EDF,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M、k
如图1,Rt△ABC≌Rt△EDF,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M、k
CDF=15°,
详解如下:由(2),得GM=AM,GK=CK,
∵MK^2+CK^2=AM^2,
∴MK^2+GK^2=GM^2,
∴∠GKM=90°,
又∵点C关于FD的对称点G,
∴∠CKG=90°,∠FKC=1/2∠CKG=45°,
又有(1),得∠A=∠ACD=30°,
∴∠FKC=∠CDF+∠ACD,
∴∠CDF=∠FKC-∠ACD=15°,
在Rt△GKM中,∠MGK=∠DGK+∠MGD=∠A+∠ACD=60°,
∴∠GMK=30°,
∴ MK/GM= (√3)/2,
∴ MK/AM= (√3)/2.
如图1,Rt△ABC≌Rt△EDF,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M、k
如图 Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M,K.(2)猜想:如图1,当0°
RT△ABC≡RT△FED,∩BCA=∩EDF=90°如图,在同一平面内,Rt△ABC≌Rt△FED,其中∠BCA=∠EDF=90°,∠B=∠E=30°,AC=FD=根号3,开始时,AC与FD重合.△DEF不动,让△ABC沿BE方向以每秒1个单位的速度向右平移,直到点c与
如图 Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M、k.如果MK²+CK²=AM²,写出∠CDF的度数和MK/AM的值
如图 Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M、k.如果MK²+CK²=AM²,写出∠CDF的度数和MK/AM的值
如图1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的中点D旋转,DE,DF分别交线段AC于点M,K.(1)观察:①如图2、图3,当∠CDF=0°或60°时,AM+CK...MK(填“>”,“<”或“=”);②如图4,
Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M,K问题3,如果MK²+CK²=AM²,直接写出∠CDF的度数,并求出MK/AM的值.如图
已知RT△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF-90°,∠EDF绕D点旋转,它的两边分别交AC,CB(或他们的延长线)于E,F.当∠EDF饶点D旋转到DE⊥AC于E时(如图①)易证S△DEF+S△CEF=1/2S△ABC.当∠EDF饶点D
已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF= 12S△ABC;当∠EDF
已知等腰Rt△ABC和等腰 Rt△EDF,其中D、G分别为斜边AB、EF的中点,连CE,又M为BC中点,N为CE的中点,连MN、MG(1)如图1,当DE恰好过M点时,求证:∠NMG=45°,且MG= 2MN(2)如图2,当等腰Rt△EDF绕D点旋转一定
已知在Rt△ABC中,AC=BC,∠C=90°,D为边AB的中点,∠EDF=90°如图,已知Rt三角形ABC中,AC=BC,角C=90度,D为AB边的中点,角EDF=90度,角EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F,当角EDF绕D
如图,Rt△ABC≌Rt△DEF,则∠E的度数为?
如图,△ABC是边长为1的等边三角形,BD=CD,∠BDC=120°,E.F分别在AB,AC上,且∠EDF等于60°,求△AEF的周RT
已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF=1 2 S△ABC;(
如图①,rt△abc和rt△dec都是等腰三角形,连接be和ad如图①,rt△abc和rt△dec都是等腰三角形,连接be和ad,易证△bce≌△acd.如果rt△abc不动,把△dec绕点c旋转,使d、e、a在一条直线上,如图②,连接be(1
如图,已知RT△ABC全等于三角形EFD,且∠ACB=∠EDF=90° (1)将RT△ABC和RT△EFD如图1拜访,使点C与点D重合请研究AB与EF的位置关系并说明理由(2)将△EFD由图1位置向右平移到图2位置,则(1)结论还
如图,在RT△ABC中,
如图,Rt△ABC中,