对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=D为对角矩阵 矩阵A为(1221) (上面12,下面21)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:39:37
对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=D为对角矩阵 矩阵A为(1221) (上面12,下面21)
xR=KA+yGnsM= H6EDM#h4!&HP.*)XofޛL}r? va~~/,(ab]]KY0-ιA)Ũ QdK8 L~^]p2+{1>"U,0 ȃ M%TNqٰ~V|rK#1-usoB68) enҔA,:7>9*j'&R-yǖOxOjgNL5aIBK*6lK<%fgU:xğޚ [;!l&3~uE

对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=D为对角矩阵 矩阵A为(1221) (上面12,下面21)
对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=D为对角矩阵 矩阵A为(1221) (上面12,下面21)

对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=D为对角矩阵 矩阵A为(1221) (上面12,下面21)
|A-λE|=
1-λ 2
2 1-λ
= (1-λ)^2 - 2^2
= (3-λ)(-1-λ)
A的特征值为 3,-1
A-3E=
-2 2
2 -2
-->
1 -1
0 0
(A-3E)X=0的基础解系为 a1=(1,1)'
A+E =
2 2
2 2
-->
1 1
0 0
(A+E)X=0的基础解系为 a2=(1,-1)'
将a1,a2单位化得 b1=(1/√2)(1,1)^T,b2=(1/√2)(1,-1)^T.
令 P=(b1,b2)=
1/√2 1/√2
1/√2 -1/√2
则P为正交矩阵,满足 P^-1AP = diag(3,-1).

对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=P^TAP=D为对角矩阵(9 -2 ,-2 9) 对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=P^TAP=D为对角矩阵 2 0 0 0 -1 3 0 3 -1对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=P^TAP=D为对角矩阵2 0 00 -1 30 3 -1 对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=D为对角矩阵矩阵A为1 2 02 1 0 0 0 1 对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=D为对角矩阵 矩阵A为(1221) (上面12,下面21) 对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=P^TAP=D为对角矩阵 【1,2,2;2,1,2;2,2,1】 实对称矩阵对角化求一个正交矩阵p,使p'-1AP=B,A为实对称矩阵,B为对角矩阵,那么求出来的p应该不唯一吧! 求下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=P^TAP=D为对角矩阵1 2 22 1 22 2 1 求正交相似变换矩阵'P,将下列实对称矩阵化为对角阵. 请在这里概述您的问题对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=P^TAP=D为对角矩阵 [9,-2;-2,6]答案是1/√5[1,2;2,-1],p-1ap=[5 10] 请在这里概述您的问题对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=P^TAP=D为对角矩阵 2 1 0 1 3 1 0 1| 2 1 0|| 1 3 1|| 0 1 2| 为啥矩阵对角化时P矩阵不一定是正交矩阵,而在实对称矩阵对角化时P矩阵一定要是正交矩阵? 设实对称矩阵A=1 -2 0 -2 2 -2 0 -2 3 求正交矩阵P,使P^-1AP为对角矩阵. 一道大学线性代数题对下列实对称矩阵,求一个正交矩阵Q和对角矩阵D,使Q^(-1 )AQ=DA=-2 2 2 2 1 4 2 4 1 实对称矩阵的对角化问题,正交矩阵p是唯一的吗? 求正交矩阵p的时候一定要利用施密特正交法把基础解系正交化吗? 对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=P^TAP=D为对角矩阵 2 0 0 0 -1 3 0 3 -1当λ1=λ2=2时,最后的一步(x x x ,x x x ,x x x )当λ3=-4时,最后的一步(x x x ,x x x ,x x x ) 4、求下列实对称矩阵A,求一个正交矩阵P,使P-1AP=PTAP=D为对角矩阵.详见补充(1)9  -2   -2  6(2)2 1 0   1 3 1   0 1 2(3)1 2 2   2 1 2   2 2 1(4)2 0 刘老师,在实对称矩阵相似对角化程中,求得A的特征值及其对应的特征向量后,书上说有两种情形若求可逆矩阵P,P-1AP为对角矩阵.若求正交矩阵Q,.,将特征向量正交规范化,则Q为正交矩阵,为什么要 正交矩阵是不是单位矩阵,求正交矩阵P使A与对角矩阵相似,为什么单位化