各位数学高手,谁能告诉我容斥原理是什么意思

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:38:43
各位数学高手,谁能告诉我容斥原理是什么意思
xX[WY+YvG d2YK} =3ϳz@)젠bnE]T_oSEFY=Hsg>{[XQUeY7~4˦6J6YX,k$<][80M3aZFfY0?wuмxq2df9y6כz3(z" z<8(r Mun5[ku(Dv]n7 آWlg=_@]ٔ,xt"8ӛ1M`B5* ׭W5$G`^D e H=kMdlwY'eCx*[N8Y%GM)r :"uX a~sr0'umyQ5⯷"~Xo\)0( )EӒ/_0"9Amj8JWqCvmE6VLp칾c(/Q9.ek.ݥef/jP.C u(VۂmFg@|ӑmF%+|$CԣjJHyjԷec%q0) I鷯*wQFG)kRhr{_#zNQcӾG<~@Nߜ"C|At:N|",dY +koZA8MyIQ=t.*mW'Fe~w ĄlI"h[6nf# ^W6%]틀dp7x7qtij!ȱt缰HXWnO]Ҁ:Yk⧫WCY?|s|`}ɂ0°_^mM"Tj%^q~7d*4bLrGќQn}Vl:]''ҿ~T<4+UaWO\iJ_0wW׹M+i4?ٓי̳F5wdۘ✾[uk|'qCvŚRT5>e|Gy}|9h m.te2I&

各位数学高手,谁能告诉我容斥原理是什么意思
各位数学高手,谁能告诉我容斥原理是什么意思

各位数学高手,谁能告诉我容斥原理是什么意思
百科上有 去看看吧

容斥原理
在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
容斥原理(1)
如果被计数的事物有A、B两类,那么,A类或B类元素个数= A类元素个数+
B类元素个数—...

全部展开

容斥原理
在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
容斥原理(1)
如果被计数的事物有A、B两类,那么,A类或B类元素个数= A类元素个数+
B类元素个数—既是A类又是B类的元素个数。
例1
一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?
分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类或B类元素个数”的总和。
试一试:某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电容斥原理(2)
如果被计数的事物有A、B、C三类,那么,A类或B类或C类元素个数= A类元素个数+
B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。
例2某校六(1)班有学生54人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有34人,足球、排球都参加的有12人,足球、游泳都参加的有18人,排球、游泳都参加的有14人,问:三项都参加的有多少人?
分析:仿照例1的分析,你能先说一说吗?
例3 在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个?
分析:显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数)。我们可以把“能被3或5整除的数”分别看成A类元素和B类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是A类又是B类的元素”。求的是“A类或B类元素个数”。现在我们还不能直接计算,必须先求出所需条件。1000÷3=333……1,能被3整除的数有333个(想一想,这是为什么?)同理,可以求出其他的条件。
例4 分母是1001的最简分数一共有多少个?
分析:这一题实际上就是找分子中不能整除1001的数。由于1001=7×11×13,所以就是找不能被7,11,13整除的数。
例5
某个班的全体学生在进行了短跑、游泳、投掷三个项目的测试后,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一项达到了优秀,达到了优秀的这部分学生情况如下表:
短跑 游泳 投掷 短跑、游泳 短跑、投掷 游泳、投掷 短路、游泳、投掷
1 7 1 8 1 5 6 6 5 2
求这个班的学生共有多少人?
分析:这个班的学生数,应包括达到优秀和没有达到优秀的。
试一试:一个班有42人,参加合唱队的有30人,参加美术组的有25人,有5人什么都没有参加,求两种都参加的有多少人?
例6
在一根长的木棍上有三种刻度线,第一种刻度线将木棍分成10等份,第二种将木棍分成12等份,第三种将木棍分成15等份。如果沿每条刻度线将木棍锯断,木棍总共被锯成多少段?
分析:很显然,要计算木棍被锯成多少段,只需要计算出木棍上共有多少条不同的刻度线,在此基础上加1就是段数了。
若按将木棍分成10等份的刻度线锯开,木棍有9条刻度线。在此木棍上加上将木棍分成12等份的11条刻度线,显然刻度线有重复的,如5/10和6/12都是1/2。同样再加上将木棍分成15等份的刻度线,也是如此。所以,我们应该按容斥原理的方法来解决此问题。用容斥原理的那一个呢?想一想,被计数的事物有那几类?每一类的元素个数是多少?

收起

集合中常用,仔细看看,再做几题就OK了(话小明 - 试用期 一级很好)。公式:
card(A∪B)=card(A)+card(B)-card(A∩B) (1)
同理,card(A∩B)=card(A)+card(B)-card(A∪B)
card(A∪B∪C)=card(A∪B)+card(C)-card(A∪B∩C)

全部展开

集合中常用,仔细看看,再做几题就OK了(话小明 - 试用期 一级很好)。公式:
card(A∪B)=card(A)+card(B)-card(A∩B) (1)
同理,card(A∩B)=card(A)+card(B)-card(A∪B)
card(A∪B∪C)=card(A∪B)+card(C)-card(A∪B∩C)
由(1)可得:=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(A∩C)+card(A∩B∩C)
其它的自己去推理吧,键盘打数学符号太慢了。在记这些公式时,画图+理解才行。

收起

容斥原理
在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
容斥原理(1)
如果被计数的事物有A、B两类,那么,A类或B类元素个数= A类元素个数+
B类元素...

全部展开

容斥原理
在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
容斥原理(1)
如果被计数的事物有A、B两类,那么,A类或B类元素个数= A类元素个数+
B类元素个数—既是A类又是B类的元素个数。
例1
一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?
分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类或B类元素个数”的总和。
试一试:某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电容斥原理(2)
如果被计数的事物有A、B、C三类,那么,A类或B类或C类元素个数= A类元素个数+
B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。
例2某校六(1)班有学生54人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有34人,足球、排球都参加的有12人,足球、游泳都参加的有18人,排球、游泳都参加的有14人,问:三项都参加的有多少人?
分析:仿照例1的分析,你能先说一说吗?
例3 在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个?
分析:显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数)。我们可以把“能被3或5整除的数”分别看成A类元素和B类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是A类又是B类的元素”。求的是“A类或B类元素个数”。现在我们还不能直接计算,必须先求出所需条件。1000÷3=333……1,能被3整除的数有333个(想一想,这是为什么?)同理,可以求出其他的条件。
例4 分母是1001的最简分数一共有多少个?
分析:这一题实际上就是找分子中不能整除1001的数。由于1001=7×11×13,所以就是找不能被7,11,13整除的数。
例5
某个班的全体学生在进行了短跑、游泳、投掷三个项目的测试后,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一项达到了优秀,达到了优秀的这部分学生情况如下表:
短跑 游泳 投掷 短跑、游泳 短跑、投掷 游泳、投掷 短路、游泳、投掷
1 7 1 8 1 5 6 6 5 2
求这个班的学生共有多少人?
分析:这个班的学生数,应包括达到优秀和没有达到优秀的。
试一试:一个班有42人,参加合唱队的有30人,参加美术组的有25人,有5人什么都没有参加,求两种都参加的有多少人?
例6
在一根长的木棍上有三种刻度线,第一种刻度线将木棍分成10等份,第二种将木棍分成12等份,第三种将木棍分成15等份。如果沿每条刻度线将木棍锯断,木棍总共被锯成多少段?
分析:很显然,要计算木棍被锯成多少段,只需要计算出木棍上共有多少条不同的刻度线,在此基础上加1就是段数了。
若按将木棍分成10等份的刻度线锯开,木棍有9条刻度线。在此木棍上加上将木棍分成12等份的11条刻度线,显然刻度线有重复的,如5/10和6/12都是1/2。同样再加上将木棍分成15等份的刻度线,也是如此。所以,我们应该按容斥原理的方法来解决此问题。用容斥原理的那一个呢?想一想,被计数的事物有那几类?每一类的元素个数是多少?

收起